IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v75y2021i2p115-136.html
   My bibliography  Save this article

Analysis of progressive Type‐II censoring in presence of competing risk data under step stress modeling

Author

Listed:
  • Arnab Koley
  • Debasis Kundu

Abstract

In this article we consider the analysis of progressively censored competing risks data obtained from a simple step‐stress experiment. It is assumed that there are only two competing causes of failures at each stress level and the lifetime distribution of each one of them is one parameter exponential distribution. Based on the cumulative exposure model assumption, the conditional maximum likelihood estimators (MLEs) of the unknown parameters can be obtained in explicit forms. Confidence intervals of the unknown parameters based on the exact distributions of the conditional MLEs and percentile bootstrap method, are constructed. Further we obtain Bayes estimates and the associated credible intervals based on a very flexible Beta‐gamma prior on the unknown parameters. A simulation experiment has been performed to observe the performances of the different estimators.

Suggested Citation

  • Arnab Koley & Debasis Kundu, 2021. "Analysis of progressive Type‐II censoring in presence of competing risk data under step stress modeling," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(2), pages 115-136, May.
  • Handle: RePEc:bla:stanee:v:75:y:2021:i:2:p:115-136
    DOI: 10.1111/stan.12226
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12226
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arnab Koley & Debasis Kundu, 2017. "On generalized progressive hybrid censoring in presence of competing risks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(4), pages 401-426, May.
    2. Balakrishnan, N. & Childs, A. & Chandrasekar, B., 2002. "An efficient computational method for moments of order statistics under progressive censoring," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 359-365, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soumya Roy & Biswabrata Pradhan, 2023. "Inference for log‐location‐scale family of distributions under competing risks with progressive type‐I interval censored data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 208-232, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basak, Indrani & Basak, Prasanta & Balakrishnan, N., 2006. "On some predictors of times to failure of censored items in progressively censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1313-1337, March.
    2. Amal S. Hassan & Rana M. Mousa & Mahmoud H. Abu-Moussa, 2024. "Bayesian Analysis of Generalized Inverted Exponential Distribution Based on Generalized Progressive Hybrid Censoring Competing Risks Data," Annals of Data Science, Springer, vol. 11(4), pages 1225-1264, August.
    3. U. H. Salemi & S. Rezaei & Y. Si & S. Nadarajah, 2018. "On Optimal Progressive Censoring Schemes for Normal Distribution," Annals of Data Science, Springer, vol. 5(4), pages 637-658, December.
    4. M. El-Din & A. Shafay, 2013. "One- and two-sample Bayesian prediction intervals based on progressively Type-II censored data," Statistical Papers, Springer, vol. 54(2), pages 287-307, May.
    5. M. M. Mohie El-Din & A. R. Shafay & M. Nagy, 2018. "Statistical inference under adaptive progressive censoring scheme," Computational Statistics, Springer, vol. 33(1), pages 31-74, March.
    6. Ayman M. Abd-Elrahman & Khalaf S. Sultan, 2007. "Reliability estimation based on general progressive censored data from theWeibull model: comparison between Bayesian and classical approaches," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 239-257.
    7. Chunfang Zhang & Yimin Shi, 2017. "Optimum simple accelerated life tests based on progressively Type-I hybrid censoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 849-856, November.
    8. Haikady Nagaraja, 2007. "Comments on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 260-261, August.
    9. Arnab Koley & Debasis Kundu, 2017. "On generalized progressive hybrid censoring in presence of competing risks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(4), pages 401-426, May.
    10. Kotb, M.S. & Raqab, M.Z., 2019. "Statistical inference for modified Weibull distribution based on progressively type-II censored data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 233-248.
    11. Lin, Chien-Tai & Chou, Cheng-Chieh & Huang, Yen-Lung, 2012. "Inference for the Weibull distribution with progressive hybrid censoring," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 451-467.
    12. Ping Chan & Hon Ng & Feng Su, 2015. "Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(6), pages 747-770, August.
    13. Prakash Chandra & Yogesh Mani Tripathi & Liang Wang & Chandrakant Lodhi, 2023. "Estimation for Kies distribution with generalized progressive hybrid censoring under partially observed competing risks model," Journal of Risk and Reliability, , vol. 237(6), pages 1048-1072, December.
    14. Abd El-Raheem M. Abd El-Raheem & Mona Hosny & Mahmoud H. Abu-Moussa, 2021. "On Progressive Censored Competing Risks Data: Real Data Application and Simulation Study," Mathematics, MDPI, vol. 9(15), pages 1-17, July.
    15. Kotb Mohammed S., 2018. "Bayesian Prediction Bounds for the Exponential-type Distribution Based on Generalized Progressive Hybrid Censoring Scheme," Stochastics and Quality Control, De Gruyter, vol. 33(2), pages 93-101, December.
    16. Wang, Liang & Tripathi, Yogesh Mani & Lodhi, Chandrakant & Zuo, Xuanjia, 2022. "Inference for constant-stress Weibull competing risks model under generalized progressive hybrid censoring," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 70-83.
    17. Alaa H. Abdel-Hamid & Atef F. Hashem, 2021. "Inference for the Exponential Distribution under Generalized Progressively Hybrid Censored Data from Partially Accelerated Life Tests with a Time Transformation Function," Mathematics, MDPI, vol. 9(13), pages 1-28, June.
    18. Jung-In Seo & Suk-Bok Kang, 2016. "An objective Bayesian analysis of the two-parameter half-logistic distribution based on progressively type-II censored samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2172-2190, September.
    19. Bairamov, Ismihan, 2006. "Progressive Type II censored order statistics for multivariate observations," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 797-809, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:75:y:2021:i:2:p:115-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.