IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v74y2020i2p159-191.html
   My bibliography  Save this article

Mean squared error of ridge estimators in logistic regression

Author

Listed:
  • Rok Blagus
  • Jelle J. Goeman

Abstract

It is well known that the maximum likelihood estimator (MLE) is inadmissible when estimating the multidimensional Gaussian location parameter. We show that the verdict is much more subtle for the binary location parameter. We consider this problem in a regression framework by considering a ridge logistic regression (RR) with three alternative ways of shrinking the estimates of the event probabilities. While it is shown that all three variants reduce the mean squared error (MSE) of the MLE, there is at the same time, for every amount of shrinkage, a true value of the location parameter for which we are overshrinking, thus implying the minimaxity of the MLE in this family of estimators. Little shrinkage also always reduces the MSE of individual predictions for all three RR estimators; however, only the naive estimator that shrinks toward 1/2 retains this property for any generalized MSE (GMSE). In contrast, for the two RR estimators that shrink toward the common mean probability, there is always a GMSE for which even a minute amount of shrinkage increases the error. These theoretical results are illustrated on a numerical example. The estimators are also applied to a real data set, and practical implications of our results are discussed.

Suggested Citation

  • Rok Blagus & Jelle J. Goeman, 2020. "Mean squared error of ridge estimators in logistic regression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(2), pages 159-191, May.
  • Handle: RePEc:bla:stanee:v:74:y:2020:i:2:p:159-191
    DOI: 10.1111/stan.12201
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12201
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:74:y:2020:i:2:p:159-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.