IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v73y2019i3p395-413.html
   My bibliography  Save this article

Nonparametric identification and estimation of current status data in the presence of death

Author

Listed:
  • Lu Mao

Abstract

We present a nonparametric study of current status data in the presence of death. Such data arise from biomedical investigations in which patients are examined for the onset of a certain disease, for example, tumor progression, but may die before the examination. A key difference between such studies on human subjects and the survival–sacrifice model in animal carcinogenicity experiments is that, due to ethical and perhaps technical reasons, deceased human subjects are not examined, so that the information on their disease status is lost. We show that, for current status data with death, only the overall and disease‐free survival functions can be identified, whereas the cumulative incidence of the disease is not identifiable. We describe a fast and stable algorithm to estimate the disease‐free survival function by maximizing a pseudo‐likelihood with plug‐in estimates for the overall survival rates. It is then proved that the global rate of convergence for the nonparametric maximum pseudo‐likelihood estimator is equal to Op(n−1/3) or the convergence rate of the estimated overall survival function, whichever is slower. Simulation studies show that the nonparametric maximum pseudo‐likelihood estimators are fairly accurate in small‐ to medium‐sized samples. Real data from breast cancer studies are analyzed as an illustration.

Suggested Citation

  • Lu Mao, 2019. "Nonparametric identification and estimation of current status data in the presence of death," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 73(3), pages 395-413, August.
  • Handle: RePEc:bla:stanee:v:73:y:2019:i:3:p:395-413
    DOI: 10.1111/stan.12175
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12175
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:73:y:2019:i:3:p:395-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.