IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v73y2019i3p373-394.html
   My bibliography  Save this article

Portfolio selection based on semivariance and distance correlation under minimum variance framework

Author

Listed:
  • Ruili Sun
  • Tiefeng Ma
  • Shuangzhe Liu

Abstract

In the minimum variance model, the covariance matrix plays an important role because it measures the risk and relationship of asset returns simultaneously under the normality assumption. However, in practice, the distribution of asset returns is nonnormal and has an obvious fat‐tail nature. In addition, the risk is one‐sided. In this paper, the main objective is to propose a better tool to replace the covariance matrix. The covariance matrix can be decomposed into two parts: a diagonal variance matrix and a square matrix with its elements being the Pearson correlation coefficient. A substitution of the covariance matrix is presented by replacing the variance and Pearson correlation coefficient in the decomposition of the covariance matrix with a semivariance and distance correlation coefficient, respectively. The proposed portfolio optimization strategy is applied to empirical data, and the numerical studies show the strategy performs well.

Suggested Citation

  • Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2019. "Portfolio selection based on semivariance and distance correlation under minimum variance framework," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 73(3), pages 373-394, August.
  • Handle: RePEc:bla:stanee:v:73:y:2019:i:3:p:373-394
    DOI: 10.1111/stan.12174
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12174
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2024. "Large-scale Time-Varying Portfolio Optimisation using Graph Attention Networks," Papers 2407.15532, arXiv.org.
    2. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:73:y:2019:i:3:p:373-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.