IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v73y2019i2p274-291.html
   My bibliography  Save this article

A new look at conditional probability with belief functions

Author

Listed:
  • Ronald Meester
  • Timber Kerkvliet

Abstract

We discuss repeatable experiments about which various agents may have different information. This information can vary from a full probabilistic description of the experiment in the sense that the probabilities of all outcomes are known to the agent, to having no information whatsoever, except the collection of possible outcomes. We argue that belief functions are very suitable for modeling the type of information we have in mind. We redevelop and rederive various notions of conditional belief functions, using a viewpoint of relative frequencies. We call the two main forms of conditioning contingent and necessary conditioning, respectively. The former is used when the conditioning event may also have not occurred, whereas the latter is used when it turns out that the event on which we condition occurs necessarily. Our approach unifies various notions in the literature into one conceptual framework, namely, the updated belief functions of Fagin and Halpern, the unnormalized conditional belief function of Smets, and the notions of updating and focusing as used by Dubois and Prade. We show that the original Dempster–Shafer definition of conditional belief functions cannot be interpreted directly in our framework. We give a number of examples illustrating our interpretation, as well as the differences between the various notions of conditioning.

Suggested Citation

  • Ronald Meester & Timber Kerkvliet, 2019. "A new look at conditional probability with belief functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 73(2), pages 274-291, May.
  • Handle: RePEc:bla:stanee:v:73:y:2019:i:2:p:274-291
    DOI: 10.1111/stan.12169
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12169
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:73:y:2019:i:2:p:274-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.