IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v15y1961i1p19-23.html
   My bibliography  Save this article

The best quadratic estimator of the residual variance in regression analysis

Author

Listed:
  • H. Theil
  • A. Schweitzer

Abstract

De beste kwadratische schattingsfunctie van de storingsvariantie in regressie‐analyse. Dit artikel handelt over de schatting van de variantie σ2 van de storingen in de regressieanalyse onder klassieke veronderstellingen: niet‐stochastische waarden aangenomen door de verklarende variabelen en normaliteit, onafhankelijkheid en homoskedasticiteit van de storingen. Bekend is dat de schatting volgens maximale aannemelijkheid neerkomt op net bepalen van de kwadratensom van de volgens kleinste‐kwadraten geschatte storingen en deling door T (het aantal waarne‐mingen); voorts, dat de schatting die minimale variantie heeft binnen de klasse van schattingsfuncties die zuiver zijn en kwadratisch in de afhankelijke variabele (de beste zuivere kwadratische schattingsfunctie) gevonden wordt door genoemde kwadratensom te delen door T–A, waarbij λ het aantal te schatten coëfficiënten is [d.w.z. het aantal verklarende variabelen (+ 1 indien een constante term aanwezig is)]. Hier wordt aangetoond, dat de schattingsfunctie van σ2 die een minimaal tweede moment heeft binnen de klasse van schattingsfuncties die kwadratisch zijn in de afhankelijke variabele (de beste kwadratische schattingsfunctie) gevonden wordt door de kwadratensom van de volgens kleinste kwadraten geschatte storingen te delen door T–Λ+ 2.

Suggested Citation

  • H. Theil & A. Schweitzer, 1961. "The best quadratic estimator of the residual variance in regression analysis," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 15(1), pages 19-23, March.
  • Handle: RePEc:bla:stanee:v:15:y:1961:i:1:p:19-23
    DOI: 10.1111/j.1467-9574.1961.tb00907.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9574.1961.tb00907.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9574.1961.tb00907.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schonfeld, Peter, 2004. "Least squares in general vector spaces revisited," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 95-109.
    2. Paul T. von Hippel, 2013. "The Bias and Efficiency of Incomplete-Data Estimators in Small Univariate Normal Samples," Sociological Methods & Research, , vol. 42(4), pages 531-558, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:15:y:1961:i:1:p:19-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.