IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v46y2019i4p987-1002.html
   My bibliography  Save this article

Scalable statistical inference for averaged implicit stochastic gradient descent

Author

Listed:
  • Yixin Fang

Abstract

Stochastic gradient descent (SGD) provides a scalable way to compute parameter estimates in applications involving large‐scale data or streaming data. As an alternative version, averaged implicit SGD (AI‐SGD) has been shown to be more stable and more efficient. Although the asymptotic properties of AI‐SGD have been well established, statistical inferences based on it such as interval estimation remain unexplored. The bootstrap method is not computationally feasible because it requires to repeatedly resample from the entire data set. In addition, the plug‐in method is not applicable when there is no explicit covariance matrix formula. In this paper, we propose a scalable statistical inference procedure, which can be used for conducting inferences based on the AI‐SGD estimator. The proposed procedure updates the AI‐SGD estimate as well as many randomly perturbed AI‐SGD estimates, upon the arrival of each observation. We derive some large‐sample theoretical properties of the proposed procedure and examine its performance via simulation studies.

Suggested Citation

  • Yixin Fang, 2019. "Scalable statistical inference for averaged implicit stochastic gradient descent," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(4), pages 987-1002, December.
  • Handle: RePEc:bla:scjsta:v:46:y:2019:i:4:p:987-1002
    DOI: 10.1111/sjos.12378
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12378
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:46:y:2019:i:4:p:987-1002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.