IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v46y2019i4p1117-1140.html
   My bibliography  Save this article

Focused information criteria for copulas

Author

Listed:
  • Vinnie Ko
  • Nils Lid Hjort
  • Ingrid Hobæk Haff

Abstract

In this paper, we extend the focused information criterion (FIC) to copula models. Copulas are often used for applications where the joint tail behavior of the variables is of particular interest, and selecting a copula that captures this well is then essential. Traditional model selection methods such as the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) aim at finding the overall best‐fitting model, which is not necessarily the one best suited for the application at hand. The FIC, on the other hand, evaluates and ranks candidate models based on the precision of their point estimates of a context‐given focus parameter. This could be any quantity of particular interest, for example, the mean, a correlation, conditional probabilities, or measures of tail dependence. We derive FIC formulae for the maximum likelihood estimator, the two‐stage maximum likelihood estimator, and the so‐called pseudo‐maximum‐likelihood (PML) estimator combined with parametric margins. Furthermore, we confirm the validity of the AIC formula for the PML estimator combined with parametric margins. To study the numerical behavior of FIC, we have carried out a simulation study, and we have also analyzed a multivariate data set pertaining to abalones. The results from the study show that the FIC successfully ranks candidate models in terms of their performance, defined as how well they estimate the focus parameter. In terms of estimation precision, FIC clearly outperforms AIC, especially when the focus parameter relates to only a specific part of the model, such as the conditional upper‐tail probability.

Suggested Citation

  • Vinnie Ko & Nils Lid Hjort & Ingrid Hobæk Haff, 2019. "Focused information criteria for copulas," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(4), pages 1117-1140, December.
  • Handle: RePEc:bla:scjsta:v:46:y:2019:i:4:p:1117-1140
    DOI: 10.1111/sjos.12387
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12387
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ko, Vinnie & Hjort, Nils Lid, 2019. "Copula information criterion for model selection with two-stage maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 12(C), pages 167-180.
    2. Tepegjozova Marija & Zhou Jing & Claeskens Gerda & Czado Claudia, 2022. "Nonparametric C- and D-vine-based quantile regression," Dependence Modeling, De Gruyter, vol. 10(1), pages 1-21, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:46:y:2019:i:4:p:1117-1140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.