IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v46y2019i2p595-620.html
   My bibliography  Save this article

Hierarchical marginal models with latent uncertainty

Author

Listed:
  • Roberto Colombi
  • Sabrina Giordano
  • Anna Gottard
  • Maria Iannario

Abstract

In responding to a rating question, an individual may give answers either according to his/her knowledge/awareness or to his/her level of indecision/uncertainty, typically driven by a response style. As ignoring this dual behavior may lead to misleading results, we define a multivariate model for ordinal rating responses by introducing, for every item and every respondent, a binary latent variable that discriminates aware from uncertain responses. Some independence assumptions among latent and observable variables characterize the uncertain behavior and make the model easier to interpret. Uncertain responses are modeled by specifying probability distributions that can depict different response styles. A marginal parameterization allows a simple and direct interpretation of the parameters in terms of association among aware responses and their dependence on explanatory factors. The effectiveness of the proposed model is attested through an application to real data and supported by a Monte Carlo study.

Suggested Citation

  • Roberto Colombi & Sabrina Giordano & Anna Gottard & Maria Iannario, 2019. "Hierarchical marginal models with latent uncertainty," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 595-620, June.
  • Handle: RePEc:bla:scjsta:v:46:y:2019:i:2:p:595-620
    DOI: 10.1111/sjos.12366
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12366
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryan H. L. Ip & K. Y. K. Wu, 2024. "A mixture distribution for modelling bivariate ordinal data," Statistical Papers, Springer, vol. 65(7), pages 4453-4488, September.
    2. Roberto Colombi & Sabrina Giordano & Gerhard Tutz, 2021. "A Rating Scale Mixture Model to Account for the Tendency to Middle and Extreme Categories," Journal of Educational and Behavioral Statistics, , vol. 46(6), pages 682-716, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:46:y:2019:i:2:p:595-620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.