Author
Listed:
- Xuerong Chen
- Yan Chen
- Alan T.K. Wan
- Yong Zhou
Abstract
The generalized method of moments (GMM) and empirical likelihood (EL) are popular methods for combining sample and auxiliary information. These methods are used in very diverse fields of research, where competing theories often suggest variables satisfying different moment conditions. Results in the literature have shown that the efficient‐GMM (GMME) and maximum empirical likelihood (MEL) estimators have the same asymptotic distribution to order n−1/2 and that both estimators are asymptotically semiparametric efficient. In this paper, we demonstrate that when data are missing at random from the sample, the utilization of some well‐known missing‐data handling approaches proposed in the literature can yield GMME and MEL estimators with nonidentical properties; in particular, it is shown that the GMME estimator is semiparametric efficient under all the missing‐data handling approaches considered but that the MEL estimator is not always efficient. A thorough examination of the reason for the nonequivalence of the two estimators is presented. A particularly strong feature of our analysis is that we do not assume smoothness in the underlying moment conditions. Our results are thus relevant to situations involving nonsmooth estimating functions, including quantile and rank regressions, robust estimation, the estimation of receiver operating characteristic (ROC) curves, and so on.
Suggested Citation
Xuerong Chen & Yan Chen & Alan T.K. Wan & Yong Zhou, 2019.
"On the asymptotic non‐equivalence of efficient‐GMM and MEL estimators in models with missing data,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 361-388, June.
Handle:
RePEc:bla:scjsta:v:46:y:2019:i:2:p:361-388
DOI: 10.1111/sjos.12354
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:46:y:2019:i:2:p:361-388. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.