IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v46y2019i1p87-115.html
   My bibliography  Save this article

Bias‐reduced marginal Akaike information criteria based on a Monte Carlo method for linear mixed‐effects models

Author

Listed:
  • Wataru Sakamoto

Abstract

In linear mixed‐effects (LME) models, if a fitted model has more random‐effect terms than the true model, a regularity condition required in the asymptotic theory may not hold. In such cases, the marginal Akaike information criterion (AIC) is positively biased for (−2) times the expected log‐likelihood. The asymptotic bias of the maximum log‐likelihood as an estimator of the expected log‐likelihood is evaluated for LME models with balanced design in the context of parameter‐constrained models. Moreover, bias‐reduced marginal AICs for LME models based on a Monte Carlo method are proposed. The performance of the proposed criteria is compared with existing criteria by using example data and by a simulation study. It was found that the bias of the proposed criteria was smaller than that of the existing marginal AIC when a larger model was fitted and that the probability of choosing a smaller model incorrectly was decreased.

Suggested Citation

  • Wataru Sakamoto, 2019. "Bias‐reduced marginal Akaike information criteria based on a Monte Carlo method for linear mixed‐effects models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(1), pages 87-115, March.
  • Handle: RePEc:bla:scjsta:v:46:y:2019:i:1:p:87-115
    DOI: 10.1111/sjos.12339
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12339
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cantoni, Eva & Jacot, Nadège & Ghisletta, Paolo, 2024. "Review and comparison of measures of explained variation and model selection in linear mixed-effects models," Econometrics and Statistics, Elsevier, vol. 29(C), pages 150-168.
    2. Benjamin Säfken & Thomas Kneib, 2020. "Conditional covariance penalties for mixed models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 990-1010, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:46:y:2019:i:1:p:87-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.