IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v46y2019i1p329-359.html
   My bibliography  Save this article

The local fractional bootstrap

Author

Listed:
  • Mikkel Bennedsen
  • Ulrich Hounyo
  • Asger Lunde
  • Mikko S. Pakkanen

Abstract

We introduce a bootstrap procedure for high‐frequency statistics of Brownian semistationary processes. More specifically, we focus on a hypothesis test on the roughness of sample paths of Brownian semistationary processes, which uses an estimator based on a ratio of realized power variations. Our new resampling method, the local fractional bootstrap, relies on simulating an auxiliary fractional Brownian motion that mimics the fine properties of high‐frequency differences of the Brownian semistationary process under the null hypothesis. We prove the first‐order validity of the bootstrap method, and in simulations, we observe that the bootstrap‐based hypothesis test provides considerable finite‐sample improvements over an existing test that is based on a central limit theorem. This is important when studying the roughness properties of time series data. We illustrate this by applying the bootstrap method to two empirical data sets: We assess the roughness of a time series of high‐frequency asset prices and we test the validity of Kolmogorov's scaling law in atmospheric turbulence data.

Suggested Citation

  • Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2019. "The local fractional bootstrap," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(1), pages 329-359, March.
  • Handle: RePEc:bla:scjsta:v:46:y:2019:i:1:p:329-359
    DOI: 10.1111/sjos.12355
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12355
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:46:y:2019:i:1:p:329-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.