IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v46y2019i1p272-288.html
   My bibliography  Save this article

A unified empirical likelihood approach for testing MCAR and subsequent estimation

Author

Listed:
  • Shixiao Zhang
  • Peisong Han
  • Changbao Wu

Abstract

For an estimation with missing data, a crucial step is to determine if the data are missing completely at random (MCAR), in which case a complete‐case analysis would suffice. Most existing tests for MCAR do not provide a method for a subsequent estimation once the MCAR is rejected. In the setting of estimating means, we propose a unified approach for testing MCAR and the subsequent estimation. Upon rejecting MCAR, the same set of weights used for testing can then be used for estimation. The resulting estimators are consistent if the missingness of each response variable depends only on a set of fully observed auxiliary variables and the true outcome regression model is among the user‐specified functions for deriving the weights. The proposed method is based on the calibration idea from survey sampling literature and the empirical likelihood theory.

Suggested Citation

  • Shixiao Zhang & Peisong Han & Changbao Wu, 2019. "A unified empirical likelihood approach for testing MCAR and subsequent estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(1), pages 272-288, March.
  • Handle: RePEc:bla:scjsta:v:46:y:2019:i:1:p:272-288
    DOI: 10.1111/sjos.12351
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12351
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hairu Wang & Zhiping Lu & Yukun Liu, 2023. "Score test for missing at random or not under logistic missingness models," Biometrics, The International Biometric Society, vol. 79(2), pages 1268-1279, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:46:y:2019:i:1:p:272-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.