IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v45y2018i3p729-752.html
   My bibliography  Save this article

Uncertainty Quantification in Case of Imperfect Models: A Non‐Bayesian Approach

Author

Listed:
  • Michael Kohler
  • Adam Krzyżak
  • Shashidhar Mallapur
  • Roland Platz

Abstract

The starting point in uncertainty quantification is a stochastic model, which is fitted to a technical system in a suitable way, and prediction of uncertainty is carried out within this stochastic model. In any application, such a model will not be perfect, so any uncertainty quantification from such a model has to take into account the inadequacy of the model. In this paper, we rigorously show how the observed data of the technical system can be used to build a conservative non‐asymptotic confidence interval on quantiles related to experiments with the technical system. The construction of this confidence interval is based on concentration inequalities and order statistics. An asymptotic bound on the length of this confidence interval is presented. Here we assume that engineers use more and more of their knowledge to build models with order of errors bounded by log(n)/n. The results are illustrated by applying the newly proposed approach to real and simulated data.

Suggested Citation

  • Michael Kohler & Adam Krzyżak & Shashidhar Mallapur & Roland Platz, 2018. "Uncertainty Quantification in Case of Imperfect Models: A Non‐Bayesian Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(3), pages 729-752, September.
  • Handle: RePEc:bla:scjsta:v:45:y:2018:i:3:p:729-752
    DOI: 10.1111/sjos.12317
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12317
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Kohler & Adam Krzyżak, 2020. "Estimating quantiles in imperfect simulation models using conditional density estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 123-155, February.
    2. Benedict Götz & Sebastian Kersting & Michael Kohler, 2021. "Estimation of an improved surrogate model in uncertainty quantification by neural networks," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 249-281, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:45:y:2018:i:3:p:729-752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.