IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v45y2018i3p534-556.html
   My bibliography  Save this article

Scalable Bayes under Informative Sampling

Author

Listed:
  • Terrance D. Savitsky
  • Sanvesh Srivastava

Abstract

Bayesian hierarchical formulations are utilized by the U.S. Bureau of Labor Statistics (BLS) with respondent‐level data for missing item imputation because these formulations are readily parameterized to capture correlation structures. BLS collects survey data under informative sampling designs that assign probabilities of inclusion to be correlated with the response on which sampling‐weighted pseudo posterior distributions are estimated for asymptotically unbiased inference about population model parameters. Computation is expensive and does not support BLS production schedules. We propose a new method to scale the computation that divides the data into smaller subsets, estimates a sampling‐weighted pseudo posterior distribution, in parallel, for every subset and combines the pseudo posterior parameter samples from all the subsets through their mean in the Wasserstein space of order 2. We construct conditions on a class of sampling designs where posterior consistency of the proposed method is achieved. We demonstrate on both synthetic data and in application to the Current Employment Statistics survey that our method produces results of similar accuracy as the usual approach while offering substantially faster computation.

Suggested Citation

  • Terrance D. Savitsky & Sanvesh Srivastava, 2018. "Scalable Bayes under Informative Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(3), pages 534-556, September.
  • Handle: RePEc:bla:scjsta:v:45:y:2018:i:3:p:534-556
    DOI: 10.1111/sjos.12312
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12312
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew R. Williams & Terrance D. Savitsky, 2021. "Uncertainty Estimation for Pseudo‐Bayesian Inference Under Complex Sampling," International Statistical Review, International Statistical Institute, vol. 89(1), pages 72-107, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:45:y:2018:i:3:p:534-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.