Convergence Analysis of MCMC Algorithms for Bayesian Multivariate Linear Regression with Non‐Gaussian Errors
Author
Abstract
Suggested Citation
DOI: 10.1111/sjos.12310
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qin, Qian & Hobert, James P., 2018. "Trace-class Monte Carlo Markov chains for Bayesian multivariate linear regression with non-Gaussian errors," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 335-345.
- Li, Haoxiang & Qin, Qian & Jones, Galin L., 2024. "Convergence analysis of data augmentation algorithms for Bayesian robust multivariate linear regression with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:45:y:2018:i:3:p:513-533. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.