IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v45y2018i3p444-464.html
   My bibliography  Save this article

Composite Estimation for Single‐Index Models with Responses Subject to Detection Limits

Author

Listed:
  • Yanlin Tang
  • Huixia Judy Wang
  • Hua Liang

Abstract

We propose a semiparametric estimator for single‐index models with censored responses due to detection limits. In the presence of left censoring, the mean function cannot be identified without any parametric distributional assumptions, but the quantile function is still identifiable at upper quantile levels. To avoid parametric distributional assumption, we propose to fit censored quantile regression and combine information across quantile levels to estimate the unknown smooth link function and the index parameter. Under some regularity conditions, we show that the estimated link function achieves the non‐parametric optimal convergence rate, and the estimated index parameter is asymptotically normal. The simulation study shows that the proposed estimator is competitive with the omniscient least squares estimator based on the latent uncensored responses for data with normal errors but much more efficient for heavy‐tailed data under light and moderate censoring. The practical value of the proposed method is demonstrated through the analysis of a human immunodeficiency virus antibody data set.

Suggested Citation

  • Yanlin Tang & Huixia Judy Wang & Hua Liang, 2018. "Composite Estimation for Single‐Index Models with Responses Subject to Detection Limits," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(3), pages 444-464, September.
  • Handle: RePEc:bla:scjsta:v:45:y:2018:i:3:p:444-464
    DOI: 10.1111/sjos.12307
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12307
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
    2. Jiang, Rong & Yu, Keming, 2020. "Single-index composite quantile regression for massive data," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    3. Han, Zhong-Cheng & Lin, Jin-Guan & Zhao, Yan-Yong, 2020. "Adaptive semiparametric estimation for single index models with jumps," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:45:y:2018:i:3:p:444-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.