IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i2p453-470.html
   My bibliography  Save this article

Optimal and Robust Designs for Estimating the Concentration Curve and the AUC

Author

Listed:
  • Mohamad Belouni
  • Karim Benhenni

Abstract

type="main" xml:id="sjos12116-abs-0001"> The problem of interest is to estimate the concentration curve and the area under the curve (AUC) by estimating the parameters of a linear regression model with an autocorrelated error process. We introduce a simple linear unbiased estimator of the concentration curve and the AUC. We show that this estimator constructed from a sampling design generated by an appropriate density is asymptotically optimal in the sense that it has exactly the same asymptotic performance as the best linear unbiased estimator. Moreover, we prove that the optimal design is robust with respect to a minimax criterion. When repeated observations are available, this estimator is consistent and has an asymptotic normal distribution. Finally, a simulated annealing algorithm is applied to a pharmacokinetic model with correlated errors.

Suggested Citation

  • Mohamad Belouni & Karim Benhenni, 2015. "Optimal and Robust Designs for Estimating the Concentration Curve and the AUC," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 453-470, June.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:2:p:453-470
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12116
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leena Choi & Brian Caffo & Charles Rohde, 2004. "Optimal Sampling Times in Bioequivalence Studies Using a Simulated Annealing Algorithm," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1059, Berkeley Electronic Press.
    2. Dette, Holger & Kunert, Joachim, 2006. "Exact optimal designs for weighted least squares analysis with correlated errors," Technical Reports 2006,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. Benelmadani & K. Benhenni & S. Louhichi, 2020. "The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1479-1500, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:2:p:453-470. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.