IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v37y2010i1p47-66.html
   My bibliography  Save this article

On the Estimation of Integrated Covariance Functions of Stationary Random Fields

Author

Listed:
  • URSA PANTLE
  • VOLKER SCHMIDT
  • EVGENY SPODAREV

Abstract

. For stationary vector‐valued random fields on the asymptotic covariance matrix for estimators of the mean vector can be given by integrated covariance functions. To construct asymptotic confidence intervals and significance tests for the mean vector, non‐parametric estimators of these integrated covariance functions are required. Integrability conditions are derived under which the estimators of the covariance matrix are mean‐square consistent. For random fields induced by stationary Boolean models with convex grains, these conditions are expressed by sufficient assumptions on the grain distribution. Performance issues are discussed by means of numerical examples for Gaussian random fields and the intrinsic volume densities of planar Boolean models with uniformly bounded grains.

Suggested Citation

  • Ursa Pantle & Volker Schmidt & Evgeny Spodarev, 2010. "On the Estimation of Integrated Covariance Functions of Stationary Random Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 47-66, March.
  • Handle: RePEc:bla:scjsta:v:37:y:2010:i:1:p:47-66
    DOI: 10.1111/j.1467-9469.2009.00663.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2009.00663.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2009.00663.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Schmidt, Volker & Spodarev, Evgueni, 2005. "Joint estimators for the specific intrinsic volumes of stationary random sets," Stochastic Processes and their Applications, Elsevier, vol. 115(6), pages 959-981, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiangyan & Cao, Guanqun & Wang, Li & Yang, Lijian, 2020. "Simultaneous confidence band for stationary covariance function of dense functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    2. Elena Di Bernardino & Céline Duval, 2022. "Statistics for Gaussian random fields with unknown location and scale using Lipschitz‐Killing curvatures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 143-184, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mrkvicka, T. & Rataj, J., 2008. "On the estimation of intrinsic volume densities of stationary random closed sets," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 213-231, February.
    2. David Dereudre & Frédéric Lavancier & Kateřina Staňková Helisová, 2014. "Estimation of the Intensity Parameter of the Germ-Grain Quermass-Interaction Model when the Number of Germs is not Observed," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 809-829, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:37:y:2010:i:1:p:47-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.