IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v34y2007i2p365-383.html
   My bibliography  Save this article

On Semiparametric EV Models with Serially Correlated Errors in Both Regression Models and Mismeasured Covariates

Author

Listed:
  • JINHONG YOU
  • HAIBO ZHOU

Abstract

. We consider inference for a semiparametric regression model where some covariates are measured with errors, and the errors in both the regression model and the mismeasured covariates are serially correlated. We propose a weighted estimating equations‐based estimator (WEEBE) for the regression coefficients. We show that the WEEBE is asymptotically more efficient than the estimators that neglect the serial correlations. This is an interesting new finding since earlier results in the statistical literature have shown that the weighted estimation is not as efficient as the unweighted estimation when the measurement errors and serially correlated errors of the regression models exist simultaneously (Biometrics, 49, 1993, 1262; Technometrics, 42, 2000, 137). The proposed WEEBE does not require undersmoothing the regressor functions in order to make it attain the root‐n consistency. Simulation studies show that the proposed estimator has nice finite sample properties. A real data set is used to illustrate the proposed method.

Suggested Citation

  • Jinhong You & Haibo Zhou, 2007. "On Semiparametric EV Models with Serially Correlated Errors in Both Regression Models and Mismeasured Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(2), pages 365-383, June.
  • Handle: RePEc:bla:scjsta:v:34:y:2007:i:2:p:365-383
    DOI: 10.1111/j.1467-9469.2006.00538.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2006.00538.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2006.00538.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peixin Zhao & Liugen Xue, 2013. "Instrumental variable-based empirical likelihood inferences for varying-coefficient models with error-prone covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 380-396, February.
    2. Cui, Hengjian & Hu, Tao, 2011. "On nonlinear regression estimator with denoised variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1137-1149, February.
    3. Amjad D. Al-Nasser, 2014. "Two steps generalized maximum entropy estimation procedure for fitting linear regression when both covariates are subject to error," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1708-1720, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:34:y:2007:i:2:p:365-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.