IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v32y2005i4p527-550.html
   My bibliography  Save this article

Non‐parametric Quantile Regression with Censored Data

Author

Listed:
  • ALI GANNOUN
  • JÉRÔME SARACCO
  • AO YUAN
  • GEORGE E. BONNEY

Abstract

. Censored regression models have received a great deal of attention in both the theoretical and applied statistics literature. Here, we consider a model in which the response variable is censored but not the covariates. We propose a new estimator of the conditional quantiles based on the local linear method, and give an algorithm for its numerical implementation. We study its asymptotic properties and evaluate its performance on simulated data sets.

Suggested Citation

  • Ali Gannoun & Jérôme Saracco & Ao Yuan & George E. Bonney, 2005. "Non‐parametric Quantile Regression with Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(4), pages 527-550, December.
  • Handle: RePEc:bla:scjsta:v:32:y:2005:i:4:p:527-550
    DOI: 10.1111/j.1467-9469.2005.00456.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2005.00456.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2005.00456.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shim, Jooyong & Hwang, Changha, 2009. "Support vector censored quantile regression under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 912-919, February.
    2. de Uña Álvarez, Jacobo & Roca Pardiñas, Javier, 2009. "Additive models in censored regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3490-3501, July.
    3. Mohamed Chaouch & Salah Khardani, 2015. "Randomly censored quantile regression estimation using functional stationary ergodic data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 65-87, March.
    4. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2015. "Tree-based censored regression with applications to insurance," Working Papers hal-01141228, HAL.
    5. Xie, Shangyu & Wan, Alan T.K. & Zhou, Yong, 2015. "Quantile regression methods with varying-coefficient models for censored data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 154-172.
    6. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2016. "Tree-based censored regression with applications in insurance," Post-Print hal-01141228, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:32:y:2005:i:4:p:527-550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.