IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v30y2003i4p699-718.html
   My bibliography  Save this article

Density Estimation for the Metropolis–Hastings Algorithm

Author

Listed:
  • M. Sköld
  • G. O. Roberts

Abstract

. Kernel density estimation is an important tool in visualizing posterior densities from Markov chain Monte Carlo output. It is well known that when smooth transition densities exist, the asymptotic properties of the estimator agree with those for independent data. In this paper, we show that because of the rejection step of the Metropolis–Hastings algorithm, this is no longer true and the asymptotic variance will depend on the probability of accepting a proposed move. We find an expression for this variance and apply the result to algorithms for automatic bandwidth selection.

Suggested Citation

  • M. Sköld & G. O. Roberts, 2003. "Density Estimation for the Metropolis–Hastings Algorithm," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(4), pages 699-718, December.
  • Handle: RePEc:bla:scjsta:v:30:y:2003:i:4:p:699-718
    DOI: 10.1111/1467-9469.00359
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00359
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Hu & Xinyan Zhu & Lian Duan & Wei Guo, 2018. "Urban crime prediction based on spatio-temporal Bayesian model," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-18, October.
    2. Adjemian, Stéphane & Bastani, Houtan & Juillard, Michel & Karamé, Fréderic & Mihoubi, Ferhat & Mutschler, Willi & Pfeifer, Johannes & Ratto, Marco & Rion, Normann & Villemot, Sébastien, 2022. "Dynare: Reference Manual Version 5," Dynare Working Papers 72, CEPREMAP, revised Mar 2023.
      • Stéphane Adjemian & Houtan Bastani & Michel Juillard & Frédéric Karamé & Ferhat Mihoubi & Willi Mutschler & Johannes Pfeifer & Marco Ratto & Sébastien Villemot & Normann Rion, 2023. "Dynare: Reference Manual Version 5," PSE Working Papers hal-04219920, HAL.
      • Stéphane Adjemian & Houtan Bastani & Michel Juillard & Frédéric Karamé & Ferhat Mihoubi & Willi Mutschler & Johannes Pfeifer & Marco Ratto & Sébastien Villemot & Normann Rion, 2023. "Dynare: Reference Manual Version 5," Working Papers hal-04219920, HAL.
    3. Bee, Marco & Espa, Giuseppe & Giuliani, Diego, 2015. "Approximate maximum likelihood estimation of the autologistic model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 14-26.
    4. Adjemian, Stéphane & Juillard, Michel & Karamé, Fréderic & Mutschler, Willi & Pfeifer, Johannes & Ratto, Marco & Rion, Normann & Villemot, Sébastien, 2024. "Dynare: Reference Manual, Version 6," Dynare Working Papers 80, CEPREMAP, revised Sep 2024.
    5. Mathieu Langlard & Fabrice Lamadie & Sophie Charton & Johan Debayle, 2021. "Bayesian Inference of a Parametric Random Spheroid from its Orthogonal Projections," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 549-567, June.
    6. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
    7. Alexey Miroshnikov & Evgeny Savelev, 2019. "Asymptotic properties of parallel Bayesian kernel density estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 771-810, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:30:y:2003:i:4:p:699-718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.