IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v25y1998i1p53-67.html
   My bibliography  Save this article

A Multivariate Model for Repeated Failure Time Measurements

Author

Listed:
  • Martin Crowder

Abstract

A parametric multivariate failure time distribution is derived from a frailty‐type model with a particular frailty distribution. It covers as special cases certain distributions which have been used for multivariate survival data in recent years. Some properties of the distribution are derived: its marginal and conditional distributions lie within the parametric family, and association between the component variates can be positive or, to a limited extent, negative. The simple closed form of the survivor function is useful for right‐censored data, as occur commonly in survival analysis, and for calculating uniform residuals. Also featured is the distribution of ratios of paired failure times. The model is applied to data from the literature

Suggested Citation

  • Martin Crowder, 1998. "A Multivariate Model for Repeated Failure Time Measurements," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 53-67, March.
  • Handle: RePEc:bla:scjsta:v:25:y:1998:i:1:p:53-67
    DOI: 10.1111/1467-9469.00088
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00088
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anthony Medford, 2021. "Modeling Best Practice Life Expectancy Using Gumbel Autoregressive Models," Risks, MDPI, vol. 9(3), pages 1-10, March.
    2. Anne‐Laure Fougères & John P. Nolan & Holger Rootzén, 2009. "Models for Dependent Extremes Using Stable Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 42-59, March.
    3. Nadarajah Saralees & Kotz Samuel, 2006. "Determination of Software Reliability based on Multivariate Exponential, Lomax and Weibull Models," Monte Carlo Methods and Applications, De Gruyter, vol. 12(5), pages 447-459, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:25:y:1998:i:1:p:53-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.