IDEAS home Printed from https://ideas.repec.org/a/bla/revpol/v41y2024i1p104-134.html
   My bibliography  Save this article

Politics of problem definition: Comparing public support of climate change mitigation policies using machine learning

Author

Listed:
  • Junghwa Choi
  • Wesley Wehde
  • Romit Maulik

Abstract

Public support is a key contributor to successful policy adoption and implementation. Given the urgency of climate change mitigation, scholars have explored various determinants that affect public support for climate change mitigation policy. However, the relative decisiveness of these factors in shaping public support is insufficiently examined. Therefore, we deploy interpretable machine learning to understand which factors, among many previously investigated, are most decisive for structuring public support for various climate change mitigation policies. In this paper, we particularly look at the decisiveness of problem definition for shaping public support among various factors. Using U.S national survey data, we find that how individuals define the issue of climate change is more decisive for structuring public support for promoting renewable energy and regulating pollutants to mitigate the risks associated with climate change. However, the results also indicate that the most decisive factors associated with public support vary depending on the types of mitigation policy. We conclude that different strategies should be utilized to increase public support for various climate change mitigation policy options. Our findings contribute to a scholarly understanding of the specific politics of problem definition in the context of environmental and climate change policy. El apoyo público es un contribuyente clave para la adopción e implementación exitosa de políticas. Dada la urgencia de la mitigación del cambio climático, los académicos han explorado varios determinantes que afectan el apoyo público a la política de mitigación del cambio climático. Sin embargo, la decisión relativa de estos factores en la configuración del apoyo público no se examina suficientemente. Por lo tanto, implementamos aprendizaje automático interpretable para comprender qué factores, entre muchos investigados previamente, son más decisivos para estructurar el apoyo público a diversas políticas de mitigación del cambio climático. En este documento, analizamos en particular la decisión de la definición del problema para dar forma al apoyo público entre varios factores. Usando datos de encuestas nacionales de EE. UU., encontramos que la forma en que las personas definen el problema del cambio climático es más decisiva para estructurar el apoyo público para promover las energías renovables y regular los contaminantes para mitigar los riesgos asociados con el cambio climático. Sin embargo, los resultados también indican que los factores más determinantes asociados al apoyo público varían según los tipos de política de mitigación. Concluimos que se deben utilizar diferentes estrategias para aumentar el apoyo público a varias opciones de políticas de mitigación del cambio climático. Nuestros hallazgos contribuyen a una comprensión académica de la política específica de definición de problemas en el contexto de la política ambiental y de cambio climático. 公众支持是成功的政策采纳和实施的关键因素。鉴于气候变化缓解的紧迫性,学者已探究了影响公众支持气候变化缓解政策的一系列决定因素。不过,这些因素在影响公众支持方面的相对决定性并未得到充分检验。因此,我们使用了可诠释的机器学习以理解在以往研究的许多因素中,哪些因素对于“构建公众对不同气候变化缓解政策的支持”而言最具决定性。本文中,我们特别研究了问题定义在影响公众支持一事上的决定性。通过使用美国国家调查数据,我们发现,个人如何定义气候变化问题一事对于“构建公众支持以促进可再生能源以及调节污染物以缓解与气候变化相关的风险”而言更具决定性。不过,结果还表明,与公众支持相关的、最具决定性的因素会因不同的缓解政策类型而存在差异。我们的结论认为,应该使用不同的策略来增加公众对不同气候变化缓解政策选项的支持。我们的研究结果有助于从学术上理解环境和气候变化政策情境下问题定义的具体政治。

Suggested Citation

  • Junghwa Choi & Wesley Wehde & Romit Maulik, 2024. "Politics of problem definition: Comparing public support of climate change mitigation policies using machine learning," Review of Policy Research, Policy Studies Organization, vol. 41(1), pages 104-134, January.
  • Handle: RePEc:bla:revpol:v:41:y:2024:i:1:p:104-134
    DOI: 10.1111/ropr.12523
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ropr.12523
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ropr.12523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:revpol:v:41:y:2024:i:1:p:104-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/ipsonea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.