IDEAS home Printed from https://ideas.repec.org/a/bla/reesec/v30y2002i4p505-532.html
   My bibliography  Save this article

Predicting Spatial Patterns of House Prices Using LPR and Bayesian Smoothing

Author

Listed:
  • John M. Clapp
  • Hyon–Jung Kim
  • Alan E. Gelfand

Abstract

This article is motivated by the limited ability of standard hedonic price equations to deal with spatial variation in house prices. Spatial patterns of house prices can be viewed as the sum of many causal factors: Access to the central business district is associated with a house price gradient; access to decentralized employment subcenters causes more localized changes in house prices; in addition, neighborhood amenities (and disamenities) can cause house prices to change rapidly over relatively short distances. Spatial prediction (e.g., for an automated valuation system) requires models that can deal with all of these sources of spatial variation. We propose to accommodate these factors using a standard hedonic framework but incoporating a semiparametric model with structure in the residuals modeled with a partially Bayesian approach. The Bayesian framework enables us to provide complete inference in the form of a posterior distribution for each model parameter. Our model allows prediction at sampled or unsampled locations as well as prediction interval estimates. The nonparametric part of our model allows sufficient flexibility to find substantial spatial variation in house values. The parameters of the kriging model provide further insights into spatial patterns. Out–of–sample mean squared error and related statistics validate the proposed methods and justify their use for spatial prediction of house values.

Suggested Citation

  • John M. Clapp & Hyon–Jung Kim & Alan E. Gelfand, 2002. "Predicting Spatial Patterns of House Prices Using LPR and Bayesian Smoothing," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 30(4), pages 505-532.
  • Handle: RePEc:bla:reesec:v:30:y:2002:i:4:p:505-532
    DOI: 10.1111/1540-6229.00048
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1540-6229.00048
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1540-6229.00048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:reesec:v:30:y:2002:i:4:p:505-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/areueea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.