IDEAS home Printed from https://ideas.repec.org/a/bla/rdevec/v22y2018i3pe63-e78.html
   My bibliography  Save this article

Forecast accuracy of small and large scale dynamic factor models in developing economies

Author

Listed:
  • German Lopez‐Buenache

Abstract

Developing economies usually present limitations in the availability of economic data. This constraint may affect the capacity of dynamic factor models to summarize large amounts of information into latent factors that reflect macroeconomic performance. This paper addresses this issue by comparing the accuracy of two kinds of dynamic factor models at GDP forecasting for six Latin American countries. Each model is based on a dataset of different dimensions: a large dataset composed of series belonging to several macroeconomic categories (large scale dynamic factor model) and a small dataset with a few prescreened variables considered as the most representative ones (small scale dynamic factor model). Short‐term pseudo real time out‐of‐sample forecast of GDP growth is carried out with both models reproducing the real time situation of data accessibility derived from the publication lags of the series in each country. Results (i) confirm the important role of the inclusion of latest released data in the forecast accuracy of both models, (ii) show better precision of predictions based on factors with respect to autoregressive models and (iii) identify the most adequate model for each country according to availability of the observed data.

Suggested Citation

  • German Lopez‐Buenache, 2018. "Forecast accuracy of small and large scale dynamic factor models in developing economies," Review of Development Economics, Wiley Blackwell, vol. 22(3), pages 63-78, August.
  • Handle: RePEc:bla:rdevec:v:22:y:2018:i:3:p:e63-e78
    DOI: 10.1111/rode.12392
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rode.12392
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rode.12392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:rdevec:v:22:y:2018:i:3:p:e63-e78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1363-6669 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.