Author
Listed:
- M. Simona Andreano
- Roberto Benedetti
- Federica Piersimoni
Abstract
Geographical data in economic, social or environmental sciences are usually recorded as compositions, i.e. relative frequencies, and a common inquiring problem concerns the analysis of these data over different geographical regions. In the present paper we define a new statistical test to verify spatial dependence of such geographical distributions based on distance correlation, a recently introduced measure of dependence between random vectors. The proposed index computes the non‐linear spatial distance between distributions and can be applied on compositional frequency distributions. Simulations and an application on Italian electoral data are presented, to illustrate the capabilities of the proposed test to detect spatial dependence. Los datos geográficos de las ciencias económicas, sociales o ambientales suelen registrarse como composiciones, es decir, frecuencias relativas, y un problema común que se plantea a menudo es el análisis de estos datos en diferentes regiones geográficas. En el presente artículo se define una nueva prueba estadística para verificar la dependencia espacial de tales distribuciones geográficas, en función de la correlación de distancias, que es una medida introducida recientemente de dependencia entre vectores aleatorios. El índice propuesto calcula la distancia espacial no lineal entre distribuciones y puede aplicarse a distribuciones de frecuencias de composición. Se presentan simulaciones y una aplicación para datos electorales italianos a fin de ilustrar las capacidades de la prueba propuesta para detectar la dependencia espacial. 経済学、社会学、環境科学における地理データは、通常は構成要素、すなわち相対度数として記録され、頻繁に尋ねられる問題は、異なる地理的地域全体のこれらのデータの分析に関するものである。本稿では、ランダムベクトル間の依存度の測定距離相関に基づく地理的分布の空間依存を検証する新規の統計的検定方法を定義する。提案した指数は、分布間の非線形空間的距離を計算し、構成要素の頻度分布に適用することができる。イタリアの選挙データに応用したシミュレーションを提示し、提案した検定法の空間依存性を検出する能力を証明する。
Suggested Citation
M. Simona Andreano & Roberto Benedetti & Federica Piersimoni, 2019.
"A distance correlation index of spatial dependence for compositional data,"
Papers in Regional Science, Wiley Blackwell, vol. 98(6), pages 2371-2389, December.
Handle:
RePEc:bla:presci:v:98:y:2019:i:6:p:2371-2389
DOI: 10.1111/pirs.12451
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:presci:v:98:y:2019:i:6:p:2371-2389. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1056-8190 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.