IDEAS home Printed from https://ideas.repec.org/a/bla/presci/v87y2008i1p97-117.html
   My bibliography  Save this article

Spatial data analysis of regional development in Greater Beijing, China, in a GIS environment

Author

Listed:
  • Danlin Yu
  • Yehua Dennis Wei

Abstract

. This study investigates spatial dependence and mechanisms of regional development in Greater Beijing, China by employing spatial statistical techniques. We have detected positive, strengthening global spatial autocorrelation from 1978 to 2001, and found such strengthening is the result of newly formed/extended clusters in the area. The local analysis recognizes local regimes of two‐tier urban‐rural spatial structure at the beginning of the reform period. While the urban‐rural divide was lessening due to the reform, a north‐south divide has emerged because of local natural conditions and development trajectories. Regarding mechanisms of regional development, ordinary least squares analysis is constrained by the existence of significant spatial autocorrelation among spatial units. Analytical results reveal that an error spatial regression model is a more appropriate alternative due to possible mismatch between boundaries of the underlying spatial process and the spatial units where data are organised. In 1995 and 2001, the signs of all the regression coefficients remained the same for both OLS and spatial models. However, their magnitude and significance change. Specifically, foreign direct investment and fixed‐asset investment became less influential in the spatial model, while local government spending emerged as more influential. Abstract. Este estudio investiga la dependencia especial y los mecanismos de desarrollo regional en el Gran Beijing, China, empleando técnicas estadísticas espaciales. Hemos detectado una autocorrelación espacial global en aumento y positiva desde 1978 al 2001, y hallado que dicho aumento es el resultado de clusters formados/ampliados recientemente en el área. El análisis local reconoce regimenes locales de estructura espacial urbana‐rural de dos niveles al inicio del periodo de reforma. Mientras que la separación urbana‐rural fue disminuyendo con la reforma, ha aparecido una separación norte‐sur por condiciones naturales locales y trayectorias de desarrollo. Respecto de los mecanismos de desarrollo regional, el análisis de mínimos cuadrados ordinario (OLS) se ve restringido por la existencia de una autocorrelación espacial significativa entre unidades espaciales. Los resultados de análisis revelan que un modelo de regresión del error espacial es una alternativa más apropiada debido a una posible disparidad entre los límites del proceso espacial subyacente y las unidades espaciales donde están organizados los datos. En 1995 y en 2001, los signos de todos los coeficientes de regresión permanecieron iguales para OLS y modelos espaciales. Sin embargo, su magnitud y significancia cambian. En particular, la inversión extranjera directa y la inversión en activos fijos pasaron a ser menos influyentes en el modelo espacial, mientras que el gasto del gobierno local apareció más influyente.

Suggested Citation

  • Danlin Yu & Yehua Dennis Wei, 2008. "Spatial data analysis of regional development in Greater Beijing, China, in a GIS environment," Papers in Regional Science, Wiley Blackwell, vol. 87(1), pages 97-117, March.
  • Handle: RePEc:bla:presci:v:87:y:2008:i:1:p:97-117
    DOI: 10.1111/j.1435-5957.2007.00148.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1435-5957.2007.00148.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1435-5957.2007.00148.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheye Wang & Yeqing Cheng & Xinyue Ye & Y. H. Dennis Wei, 2016. "Analyzing the Space–Time Dynamics of Innovation in China: ESDA and Spatial Panel Approaches," Growth and Change, Wiley Blackwell, vol. 47(1), pages 111-129, March.
    2. Chen, Zhenhua & Haynes, Kingsley E., 2017. "Impact of high-speed rail on regional economic disparity in China," Journal of Transport Geography, Elsevier, vol. 65(C), pages 80-91.
    3. Huimin Xu & Hutao Yang & Xi Li & Huiran Jin & Deren Li, 2015. "Multi-Scale Measurement of Regional Inequality in Mainland China during 2005–2010 Using DMSP/OLS Night Light Imagery and Population Density Grid Data," Sustainability, MDPI, vol. 7(10), pages 1-31, September.
    4. Guangdong Li & Chuanglin Fang, 2014. "Analyzing the multi-mechanism of regional inequality in China," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(1), pages 155-182, January.
    5. José Villaverde & Adolfo Maza, 2012. "Chinese per Capita Income Distribution, 1992–2007: A Regional Perspective," Asian Economic Journal, East Asian Economic Association, vol. 26(4), pages 313-331, December.
    6. Wang, Xiaoxi & Zhang, Yaojun & Yu, Danlin & Qi, Jinghan & Li, Shujing, 2022. "Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China," Land Use Policy, Elsevier, vol. 119(C).
    7. Kristian Behrens & Frédéric Robert‐Nicoud, 2009. "Krugman's Papers in Regional Science: The 100 dollar bill on the sidewalk is gone and the 2008 Nobel Prize well‐deserved," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 467-489, June.
    8. Zhang, Daojun & Yang, Wanjing & Kang, Dingrong & Zhang, Han, 2023. "Spatial-temporal characteristics and policy implication for non-grain production of cultivated land in Guanzhong Region," Land Use Policy, Elsevier, vol. 125(C).
    9. Li, Fang & Feng, Shuyi & Lu, Hualiang & Qu, Futian & D’Haese, Marijke, 2021. "How do non-farm employment and agricultural mechanization impact on large-scale farming? A spatial panel data analysis from Jiangsu Province, China," Land Use Policy, Elsevier, vol. 107(C).
    10. Jie Gu & Suhong Zhou & Xinyue Ye, 2016. "Uneven Regional Development Under Balanced Development Strategies: Space-Time Paths of Regional Development in Guangdong, China," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 107(5), pages 596-610, December.
    11. Giuseppe Arbia, 2011. "A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007--2011)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 377-395, July.
    12. Sun, Xinyu & Yan, Sen & Liu, Tao & Wang, Jiayin, 2023. "The impact of high-speed rail on urban economy: Synergy with urban agglomeration policy," Transport Policy, Elsevier, vol. 130(C), pages 141-154.
    13. Sélin Ozyurt, 2008. "A Fresh Scrutiny on Openness and Per Capita Income Spillovers in Chinese Cities: A Spatial Econometric Perspective," Working Papers 08-17, LAMETA, Universtiy of Montpellier, revised Nov 2008.
    14. Polina A. Popova & Tatiana V. Bukina & Dmitriy V. Kashin, 2024. "Influence of Interregional Spatial Effects on the Economic Development of Russian Regions," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(3), pages 751-775.
    15. Yingru Li, 2012. "The spatial variation of China's regional inequality in human development," Regional Science Policy & Practice, Wiley Blackwell, vol. 4(3), pages 263-278, August.
    16. Tingzhu Li & Ran Liu & Wei Qi, 2019. "Regional Heterogeneity of Migrant Rent Affordability Stress in Urban China: A Comparison between Skilled and Unskilled Migrants at Prefecture Level and Above," Sustainability, MDPI, vol. 11(21), pages 1-26, October.
    17. Guangdong Li & Chuanglin Fang, 2018. "Spatial Econometric Analysis of Urban and County-level Economic Growth Convergence in China," International Regional Science Review, , vol. 41(4), pages 410-447, July.
    18. Yu, Danlin & Murakami, Daisuke & Zhang, Yaojun & Wu, Xiwei & Li, Ding & Wang, Xiaoxi & Li, Guangdong, 2020. "Investigating high-speed rail construction's support to county level regional development in China: An eigenvector based spatial filtering panel data analysis," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 21-37.
    19. Hammed Amusa & Njeri Wabiri & David Fadiran, 2019. "Agglomeration and productivity in South Africa: Evidence from firm-level data," WIDER Working Paper Series wp-2019-93, World Institute for Development Economic Research (UNU-WIDER).
    20. Danlin Yu & Chuanglin Fang & Dan Xue & Jingyuan Yin, 2014. "Assessing Urban Public Safety via Indicator-Based Evaluating Method: A Systemic View of Shanghai," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 117(1), pages 89-104, May.
    21. Yu Liu & Chen Zeng & Huatai Cui & Yanhua Song, 2018. "Sustainable Land Urbanization and Ecological Carrying Capacity: A Spatially Explicit Perspective," Sustainability, MDPI, vol. 10(9), pages 1-16, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:presci:v:87:y:2008:i:1:p:97-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1056-8190 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.