Author
Listed:
- Goro Akagi
- Giulio Schimperna
Abstract
This paper is concerned with a parabolic evolution equation of the form A(ut)+B(u)=f$A(u_t) + B(u) = f$, settled in a smooth bounded domain of Rd$\mathbb {R}^d$, d≥1$d\ge 1$, and complemented with the initial conditions and with (for simplicity) homogeneous Dirichlet boundary conditions. Here, −B$-B$ stands for a diffusion operator, possibly nonlinear, which may range in a very wide class, including the Laplacian, the m$m$‐Laplacian for suitable m∈(1,∞)$m\in (1,\infty)$, the “variable‐exponent” m(x)$m(x)$‐Laplacian, or even some fractional order operators. The operator A$A$ is assumed to be in the form [A(v)](x,t)=α(x,v(x,t))$[A(v)](x,t)=\alpha (x,v(x,t))$ with α$\alpha$ being measurable in x$x$ and maximal monotone in v$v$. The main results are devoted to proving existence of weak solutions for a wide class of functions α$\alpha$ that extends the setting considered in previous results related to the variable exponent case where α(x,v)=|v(x)|p(x)−2v(x)$\alpha (x,v)=|v(x)|^{p(x)-2}v(x)$. To this end, a theory of subdifferential operators will be established in Musielak–Orlicz spaces satisfying structure conditions of the so‐called Δ2$\Delta _2$‐type, and a framework for approximating maximal monotone operators acting in that class of spaces will also be developed. Such a theory is then applied to provide an existence result for a specific equation, but it may have an independent interest in itself. Finally, the existence result is illustrated by presenting a number of specific equations (and, correspondingly, of operators A$A$, B$B$) to which the result can be applied.
Suggested Citation
Goro Akagi & Giulio Schimperna, 2024.
"On a class of doubly nonlinear evolution equations in Musielak–Orlicz spaces,"
Mathematische Nachrichten, Wiley Blackwell, vol. 297(7), pages 2686-2729, July.
Handle:
RePEc:bla:mathna:v:297:y:2024:i:7:p:2686-2729
DOI: 10.1002/mana.202300374
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathna:v:297:y:2024:i:7:p:2686-2729. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0025-584X .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.