IDEAS home Printed from https://ideas.repec.org/a/bla/mathna/v297y2024i6p2365-2389.html
   My bibliography  Save this article

Endpoint estimates for harmonic analysis operators associated with Laguerre polynomial expansions

Author

Listed:
  • Jorge J. Betancor
  • Estefanía Dalmasso
  • Pablo Quijano
  • Roberto Scotto

Abstract

In this paper, we give a criterion to prove boundedness results for several operators from the Hardy‐type space H1((0,∞)d,γα)$H^1((0,\infty)^d,\gamma _\alpha)$ to L1((0,∞)d,γα)$L^1((0,\infty)^d,\gamma _\alpha)$ and also from L∞((0,∞)d,γα)$L^\infty ((0,\infty)^d,\gamma _\alpha)$ to the space of functions of bounded mean oscillation BMO((0,∞)d,γα)$\textup {BMO}((0,\infty)^d,\gamma _\alpha)$, with respect to the probability measure dγα(x)=∏j=1d2Γ(αj+1)xj2αj+1e−xj2dxj$d\gamma _\alpha (x)=\prod _{j=1}^d\frac{2}{\Gamma (\alpha _j+1)} x_j^{2\alpha _j+1} \text{e}^{-x_j^2} dx_j$ on (0,∞)d$(0,\infty)^d$ when α=(α1,⋯,αd)$\alpha =(\alpha _1, \dots,\alpha _d)$ is a multi‐index in −12,∞d$\left(-\frac{1}{2},\infty \right)^d$. We shall apply it to establish endpoint estimates for Riesz transforms, maximal operators, Littlewood–Paley functions, multipliers of the Laplace transform type, fractional integrals, and variation operators in the Laguerre setting.

Suggested Citation

  • Jorge J. Betancor & Estefanía Dalmasso & Pablo Quijano & Roberto Scotto, 2024. "Endpoint estimates for harmonic analysis operators associated with Laguerre polynomial expansions," Mathematische Nachrichten, Wiley Blackwell, vol. 297(6), pages 2365-2389, June.
  • Handle: RePEc:bla:mathna:v:297:y:2024:i:6:p:2365-2389
    DOI: 10.1002/mana.202300088
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/mana.202300088
    Download Restriction: no

    File URL: https://libkey.io/10.1002/mana.202300088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathna:v:297:y:2024:i:6:p:2365-2389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0025-584X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.