IDEAS home Printed from https://ideas.repec.org/a/bla/mathna/v297y2024i6p1988-2005.html
   My bibliography  Save this article

Bilinear Θ$\Theta$‐type Calderón–Zygmund operators and their commutators on product generalized fractional mixed Morrey spaces

Author

Listed:
  • Guanghui Lu
  • Shuangping Tao
  • Miaomiao Wang

Abstract

The aim of this paper is to investigate the boundedness of the bilinear θ$\theta$‐type Calderón–Zygmund operator and its commutator on the product of generalized fractional mixed Morrey spaces. Under assumption that the positive and increasing functions φ(·)$\varphi (\cdot)$ defined on [0,∞)$[0,\infty)$ satisfy doubling conditions, we prove that the bilinear θ$\theta$‐type Calderón–Zygmund operator T∼θ$\widetilde{T}_{\theta }$ is bounded from the product of generalized fractional mixed Morrey spaces Lp⃗1,η1,φ(Rn)×Lp⃗2,η2,φ(Rn)$L^{\vec{p}_{1},\eta _{1},\varphi }({\bf R}^{n})\times L^{\vec{p}_{2},\eta _{2},\varphi }({\bf R}^{n})$ into spaces Lp⃗,η,φ(Rn)$L^{\vec{p},\eta,\varphi }({\bf R}^{n})$, where p⃗1=(p11,…,p1n)$\vec{p}_{1}=(p_{11},\ldots ,p_{1n})$, p⃗2=(p21,…,p2n)$\vec{p}_{2}=(p_{21},\ldots ,p_{2n})$, p⃗=(p1,…,pn)$\vec{p}=(p_{1},\ldots ,p_{n})$, 1p⃗1+1p⃗2=1p⃗$\frac{1}{\vec{p}_{1}}+\frac{1}{\vec{p}_{2}}=\frac{1}{\vec{p}}$ for 1

Suggested Citation

  • Guanghui Lu & Shuangping Tao & Miaomiao Wang, 2024. "Bilinear Θ$\Theta$‐type Calderón–Zygmund operators and their commutators on product generalized fractional mixed Morrey spaces," Mathematische Nachrichten, Wiley Blackwell, vol. 297(6), pages 1988-2005, June.
  • Handle: RePEc:bla:mathna:v:297:y:2024:i:6:p:1988-2005
    DOI: 10.1002/mana.202200481
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/mana.202200481
    Download Restriction: no

    File URL: https://libkey.io/10.1002/mana.202200481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathna:v:297:y:2024:i:6:p:1988-2005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0025-584X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.