IDEAS home Printed from https://ideas.repec.org/a/bla/mathna/v296y2023i2p701-715.html
   My bibliography  Save this article

Gradient estimate for asymptotically regular elliptic equations of double phase with variable exponents

Author

Listed:
  • Shuang Liang
  • Shenzhou Zheng

Abstract

We devote this paper to the proof of a regularity result for the solutions of asymptotically regular elliptic equations with (p(x),q(x))$(p(x),q(x))$‐growth. By approximating the solutions of asymptotically regular problems with the solutions of regular problems based on a new perturbation method while the gradients of solutions close to infinity, we derive an interior Calderón–Zygmund estimate.

Suggested Citation

  • Shuang Liang & Shenzhou Zheng, 2023. "Gradient estimate for asymptotically regular elliptic equations of double phase with variable exponents," Mathematische Nachrichten, Wiley Blackwell, vol. 296(2), pages 701-715, February.
  • Handle: RePEc:bla:mathna:v:296:y:2023:i:2:p:701-715
    DOI: 10.1002/mana.202000456
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/mana.202000456
    Download Restriction: no

    File URL: https://libkey.io/10.1002/mana.202000456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Junjie Zhang & Shenzhou Zheng, 2018. "Lorentz estimates for asymptotically regular fully nonlinear parabolic equations," Mathematische Nachrichten, Wiley Blackwell, vol. 291(5-6), pages 996-1008, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathna:v:296:y:2023:i:2:p:701-715. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0025-584X .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.