IDEAS home Printed from https://ideas.repec.org/a/bla/mathna/v291y2018i5-6p759-773.html
   My bibliography  Save this article

Well†posedness of fractional degenerate differential equations with finite delay on vector†valued functional spaces

Author

Listed:
  • Shangquan Bu
  • Gang Cai

Abstract

We study the well†posedness of the fractional degenerate differential equations with finite delay (Pα):Dα(Mu)(t)=Au(t)+Fut+f(t),(0≤t≤2π,α>0) on Lebesgue–Bochner spaces Lp(T;X), periodic Besov spaces Bp,qs(T;X) and periodic Triebel–Lizorkin spaces Fp,qs(T;X), where A and M are closed linear operators on a Banach space X satisfying D(A)⊂D(M), F is a bounded linear operator from Lp([−2π,0];X) (resp. Bp,qs([−2π,0];X) and Fp,qs([−2π,0];X)) into X, where ut is given by ut(s)=u(t+s) when s∈[−2π,0] and t∈[0,2π]. Using known operator†valued Fourier multiplier theorems, we give necessary or sufficient conditions for the well†posedness of (Pα) in the above three function spaces.

Suggested Citation

  • Shangquan Bu & Gang Cai, 2018. "Well†posedness of fractional degenerate differential equations with finite delay on vector†valued functional spaces," Mathematische Nachrichten, Wiley Blackwell, vol. 291(5-6), pages 759-773, April.
  • Handle: RePEc:bla:mathna:v:291:y:2018:i:5-6:p:759-773
    DOI: 10.1002/mana.201600502
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/mana.201600502
    Download Restriction: no

    File URL: https://libkey.io/10.1002/mana.201600502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathna:v:291:y:2018:i:5-6:p:759-773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0025-584X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.