IDEAS home Printed from https://ideas.repec.org/a/bla/mathna/v291y2018i2-3p326-342.html
   My bibliography  Save this article

Multiple solutions for Kirchhoff†type problems with variable exponent and nonhomogeneous Neumann conditions

Author

Listed:
  • Shapour Heidarkhani
  • Anderson L. A. De Araujo
  • Ghasem A. Afrouzi
  • Shahin Moradi

Abstract

The existence of at least three weak solutions for a class of differential equations with p(x)†Kirchhoff†type and subject to small perturbations of nonhomogeneous Neumann conditions is established under suitable assumptions. Our technical approach is based on variational methods. In addition, an example to illustrate our results is given.

Suggested Citation

  • Shapour Heidarkhani & Anderson L. A. De Araujo & Ghasem A. Afrouzi & Shahin Moradi, 2018. "Multiple solutions for Kirchhoff†type problems with variable exponent and nonhomogeneous Neumann conditions," Mathematische Nachrichten, Wiley Blackwell, vol. 291(2-3), pages 326-342, February.
  • Handle: RePEc:bla:mathna:v:291:y:2018:i:2-3:p:326-342
    DOI: 10.1002/mana.201600425
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/mana.201600425
    Download Restriction: no

    File URL: https://libkey.io/10.1002/mana.201600425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heidarkhani, Shapour & Bohner, Martin & Caristi, Giuseppe & Ayazi, Farahnaz, 2021. "A critical point approach for a second-order dynamic Sturm–Liouville boundary value problem with p-Laplacian," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    2. Bei-Lei Zhang & Bin Ge & Xiao-Feng Cao, 2020. "Multiple Solutions for a Class of New p ( x )-Kirchhoff Problem without the Ambrosetti-Rabinowitz Conditions," Mathematics, MDPI, vol. 8(11), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathna:v:291:y:2018:i:2-3:p:326-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0025-584X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.