IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v9y1999i1p55-96.html
   My bibliography  Save this article

Step Options

Author

Listed:
  • Vadim Linetsky

Abstract

Motivated by risk management problems with barrier options, we propose a flexible modification of the standard knock‐out and knock‐in provisions and introduce a family of path‐dependent options: step options. They are parametrized by a finite knock‐out (knock‐in) rate, ρ. For a down‐and‐out step option, its payoff at expiration is defined as the payoff of an otherwise identical vanilla option discounted by the knock‐out factor exp(‐ρτB‐) or max(1‐ρτ‐B,0), where &\tau;B‐ is the total time during the contract life that the underlying price was lower than a prespecified barrier level ( occupation time). We derive closed‐form pricing formulas for step options with any knock‐out rate in the range $[0,∞). For any finite knock‐out rate both the step option's value and delta are continuous functions of the underlying price at the barrier. As a result, they can be continuously hedged by trading the underlying asset and borrowing. Their risk management properties make step options attractive “no‐regrets” alternatives to standard barrier options. As a by‐product, we derive a dynamic almost‐replicating trading strategy for standard barrier options by considering a replicating strategy for a step option with high but finite knock‐out rate. Finally, a general class of derivatives contingent on occupation times is considered and closed‐form pricing formulas are derived.

Suggested Citation

  • Vadim Linetsky, 1999. "Step Options," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 55-96, January.
  • Handle: RePEc:bla:mathfi:v:9:y:1999:i:1:p:55-96
    DOI: 10.1111/1467-9965.00063
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9965.00063
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9965.00063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingsi Long & Hongzhong Zhang, 2017. "On the optimality of threshold type strategies in single and recursive optimal stopping under L\'evy models," Papers 1707.07797, arXiv.org, revised Aug 2018.
    2. Djilali Ait Aoudia & Jean-Franc{c}ois Renaud, 2016. "Pricing occupation-time options in a mixed-exponential jump-diffusion model," Papers 1603.09329, arXiv.org.
    3. Windcliff, H. & Vetzal, K. R. & Forsyth, P. A. & Verma, A. & Coleman, T. F., 2003. "An object-oriented framework for valuing shout options on high-performance computer architectures," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1133-1161, April.
    4. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    5. Giuseppe Campolieti & Roman N. Makarov & Karl Wouterloot, 2013. "Pricing Step Options under the CEV and other Solvable Diffusion Models," Papers 1302.3771, arXiv.org.
    6. Beghin, L. & Nikitin, Y. & Orsingher, E., 2003. "How the sojourn time distributions of Brownian motion are affected by different forms of conditioning," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 291-302, December.
    7. Zhou, Jiang & Wu, Lan & Bai, Yang, 2017. "Occupation times of Lévy-driven Ornstein–Uhlenbeck processes with two-sided exponential jumps and applications," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 80-90.
    8. Bernard, Carole & Le Courtois, Olivier & Quittard-Pinon, François, 2008. "Pricing derivatives with barriers in a stochastic interest rate environment," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2903-2938, September.
    9. Sesana, Debora & Marazzina, Daniele & Fusai, Gianluca, 2014. "Pricing exotic derivatives exploiting structure," European Journal of Operational Research, Elsevier, vol. 236(1), pages 369-381.
    10. Neofytos Rodosthenous & Hongzhong Zhang, 2017. "Beating the Omega Clock: An Optimal Stopping Problem with Random Time-horizon under Spectrally Negative L\'evy Models," Papers 1706.03724, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:9:y:1999:i:1:p:55-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.