IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v29y2019i3p967-1000.html
   My bibliography  Save this article

Value‐at‐Risk bounds with two‐sided dependence information

Author

Listed:
  • Thibaut Lux
  • Ludger Rüschendorf

Abstract

Value‐at‐Risk (VaR) bounds for aggregated risks have been derived in the literature in settings where, besides the marginal distributions of the individual risk factors, one‐sided bounds for the joint distribution or the copula of the risks are available. In applications, it turns out that these improved standard bounds on VaR tend to be too wide to be relevant for practical applications, especially when the number of risk factors is large or when the dependence restriction is not strong enough. In this paper, we develop a method to compute VaR bounds when besides the marginal distributions of the risk factors, two‐sided dependence information in form of an upper and a lower bound on the copula of the risk factors is available. The method is based on a relaxation of the exact dual bounds that we derive by means of the Monge–Kantorovich transportation duality. In several applications, we illustrate that two‐sided dependence information typically leads to strongly improved bounds on the VaR of aggregations.

Suggested Citation

  • Thibaut Lux & Ludger Rüschendorf, 2019. "Value‐at‐Risk bounds with two‐sided dependence information," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 967-1000, July.
  • Handle: RePEc:bla:mathfi:v:29:y:2019:i:3:p:967-1000
    DOI: 10.1111/mafi.12192
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12192
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    2. Nasini, Stefano & Labbé, Martine & Brotcorne, Luce, 2022. "Multi-market portfolio optimization with conditional value at risk," European Journal of Operational Research, Elsevier, vol. 300(1), pages 350-365.
    3. Jonathan Ansari & Eva Lutkebohmert & Ariel Neufeld & Julian Sester, 2022. "Improved Robust Price Bounds for Multi-Asset Derivatives under Market-Implied Dependence Information," Papers 2204.01071, arXiv.org, revised Sep 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:29:y:2019:i:3:p:967-1000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.