IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v28y2018i3p920-961.html
   My bibliography  Save this article

Analytical approximations of local†Heston volatility model and error analysis

Author

Listed:
  • R. Bompis
  • E. Gobet

Abstract

This paper studies the expansion of an option price (with bounded Lipschitz payoff) in a stochastic volatility model including a local volatility component. The stochastic volatility is a square root process, which is widely used for modeling the behavior of the variance process (Heston model). The local volatility part is of general form, requiring only appropriate growth and boundedness assumptions. We rigorously establish tight error estimates of our expansions, using Malliavin calculus. The error analysis, which requires a careful treatment because of the lack of weak differentiability of the model, is interesting on its own. Moreover, in the particular case of call–put options, we also provide expansions of the Black–Scholes implied volatility that allow to obtain very simple formulas that are fast to compute compared to the Monte Carlo approach and maintain a very competitive accuracy.

Suggested Citation

  • R. Bompis & E. Gobet, 2018. "Analytical approximations of local†Heston volatility model and error analysis," Mathematical Finance, Wiley Blackwell, vol. 28(3), pages 920-961, July.
  • Handle: RePEc:bla:mathfi:v:28:y:2018:i:3:p:920-961
    DOI: 10.1111/mafi.12154
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12154
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Ning & Li, Chenxu & Shi, Chao, 2021. "Pricing discretely monitored barrier options: When Malliavin calculus expansions meet Hilbert transforms," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:28:y:2018:i:3:p:920-961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.