IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v28y2018i2p536-549.html
   My bibliography  Save this article

On peacocks and lyrebirds: Australian options, Brownian bridges, and the average of submartingales

Author

Listed:
  • Christian†Oliver Ewald
  • Marc Yor

Abstract

We introduce a class of stochastic processes, which we refer to as lyrebirds. These extend a class of stochastic processes, which have recently been coined peacocks, but are more commonly known as processes that are increasing in the convex order. We show how these processes arise naturally in the context of Asian and Australian options and consider further applications, such as the arithmetic average of a Brownian bridge and the average of submartingales, including the case of Asian and Australian options where the underlying features constant elasticity of variance or is of Merton jump diffusion type.

Suggested Citation

  • Christian†Oliver Ewald & Marc Yor, 2018. "On peacocks and lyrebirds: Australian options, Brownian bridges, and the average of submartingales," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 536-549, April.
  • Handle: RePEc:bla:mathfi:v:28:y:2018:i:2:p:536-549
    DOI: 10.1111/mafi.12144
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12144
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    2. Michael R. Tehranchi, 2020. "A Black–Scholes inequality: applications and generalisations," Finance and Stochastics, Springer, vol. 24(1), pages 1-38, January.
    3. Liu, Yating & Pagès, Gilles, 2022. "Monotone convex order for the McKean–Vlasov processes," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 312-338.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:28:y:2018:i:2:p:536-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.