IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v27y2017i3p866-901.html
   My bibliography  Save this article

A Primal–Dual Algorithm For Bsdes

Author

Listed:
  • Christian Bender
  • Nikolaus Schweizer
  • Jia Zhuo

Abstract

No abstract is available for this item.

Suggested Citation

  • Christian Bender & Nikolaus Schweizer & Jia Zhuo, 2017. "A Primal–Dual Algorithm For Bsdes," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 866-901, July.
  • Handle: RePEc:bla:mathfi:v:27:y:2017:i:3:p:866-901
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/mafi.2017.27.issue-3
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teng, Long, 2022. "Gradient boosting-based numerical methods for high-dimensional backward stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    2. Roger J. A. Laeven & John G. M. Schoenmakers & Nikolaus F. F. Schweizer & Mitja Stadje, 2020. "Robust Multiple Stopping -- A Pathwise Duality Approach," Papers 2006.01802, arXiv.org, revised Sep 2021.
    3. Christian Bender & Christian Gärtner & Nikolaus Schweizer, 2018. "Pathwise Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 965-965, August.
    4. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.
    5. Ariel Neufeld & Philipp Schmocker & Sizhou Wu, 2024. "Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs," Papers 2405.05192, arXiv.org, revised Sep 2024.
    6. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:27:y:2017:i:3:p:866-901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.