IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v16y2006i3p495-517.html
   My bibliography  Save this article

Hedging With Energy

Author

Listed:
  • Francesco Corielli

Abstract

In the setting of diffusion models for price evolution, we suggest an easily implementable approximate evaluation formula for measuring the errors in option pricing and hedging due to volatility misspecification. The main tool we use in this paper is a (suitably modified) classical inequality for the L2 norm of the solution, and the derivatives of the solution, of a partial differential equation (the so‐called “energy” inequality). This result allows us to give bounds on the errors implied by the use of approximate models for option valuation and hedging and can be used to justify formally some “folk” belief about the robustness of the Black and Scholes model. Surprisingly enough, the result can also be applied to improve pricing and hedging with an approximate model. When statistical or a priori information is available on the “true” volatility, the error measure given by the energy inequality can be minimized w.r.t. the parameters of the approximating model. The method suggested in this paper can help in conjugating statistical estimation of the volatility function derived from flexible but computationally cumbersome statistical models, with the use of analytically tractable approximate models calibrated using error estimates.

Suggested Citation

  • Francesco Corielli, 2006. "Hedging With Energy," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 495-517, July.
  • Handle: RePEc:bla:mathfi:v:16:y:2006:i:3:p:495-517
    DOI: 10.1111/j.1467-9965.2006.00280.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.2006.00280.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.2006.00280.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:16:y:2006:i:3:p:495-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.