IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v15y2005i3p439-463.html
   My bibliography  Save this article

Critical Price Near Maturity For An American Option On A Dividend‐Paying Stock In A Local Volatility Model

Author

Listed:
  • Etienne Chevalier

Abstract

We consider an American put option on a dividend‐paying stock whose volatility is a function of the stock value. Near the maturity of this option, an expansion of the critical stock price is given. If the stock dividend rate is greater than the market interest rate, the payoff function is smooth near the limit of the critical price. We deduce an expansion of the critical price near maturity from an expansion of the value function of an optimal stopping problem. It turns out that the behavior of the critical price is parabolic. In the other case, we are in a less regular situation and an extra logarithmic factor appears. To prove this result, we show that the American and European critical prices have the same first‐order behavior near maturity. Finally, in order to get an expansion of the European critical price, we use a parity formula for exchanging the strike price and the spot price in the value functions of European puts.

Suggested Citation

  • Etienne Chevalier, 2005. "Critical Price Near Maturity For An American Option On A Dividend‐Paying Stock In A Local Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 439-463, July.
  • Handle: RePEc:bla:mathfi:v:15:y:2005:i:3:p:439-463
    DOI: 10.1111/j.1467-9965.2005.00228.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.2005.00228.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.2005.00228.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung, Y. Peter & Johnson, Herb & Polimenis, Vassilis, 2011. "The critical stock price for the American put option," Finance Research Letters, Elsevier, vol. 8(1), pages 8-14, March.
    2. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
    3. E. Chevalier, 2006. "Optimal Early Retirement Near the Expiration of a Pension Plan," Finance and Stochastics, Springer, vol. 10(2), pages 204-221, April.
    4. Chung, San-Lin & Shih, Pai-Ta, 2009. "Static hedging and pricing American options," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2140-2149, November.
    5. Leunglung Chan & Song-Ping Zhu, 2021. "An Analytic Approach for Pricing American Options with Regime Switching," JRFM, MDPI, vol. 14(5), pages 1-20, April.
    6. Aricson Cruz & José Carlos Dias, 2020. "Valuing American-style options under the CEV model: an integral representation based method," Review of Derivatives Research, Springer, vol. 23(1), pages 63-83, April.
    7. E. Chevalier, 2006. "Optimal Early Retirement Near the Expiration of a Pension Plan," Finance and Stochastics, Springer, vol. 10(2), pages 204-221, April.
    8. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:15:y:2005:i:3:p:439-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.