IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v14y2004i4p605-618.html
   My bibliography  Save this article

Dynamic Minimization of Worst Conditional Expectation of Shortfall

Author

Listed:
  • Jun Sekine

Abstract

In a complete financial market model, the shortfall‐risk minimization problem at the terminal date is treated for the seller of a derivative security F. The worst conditional expectation of the shortfall is adopted as the measure of this risk, ensuring that the minimized risk satisfies certain desirable properties as the dynamic measure of risk, as proposed by Cvitanić and Karatzas (1999). The terminal value of the optimized portfolio is a binary functional dependent on F and the Radon‐Nikodym density of the equivalent local martingale measure. In particular, it is observed that there exists a positive number x* that is less than the replicating cost xF of F, and that the strategy minimizing the expectation of the shortfall is optimal if the hedger's capital is in the range [x*, xF].

Suggested Citation

  • Jun Sekine, 2004. "Dynamic Minimization of Worst Conditional Expectation of Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 605-618, October.
  • Handle: RePEc:bla:mathfi:v:14:y:2004:i:4:p:605-618
    DOI: 10.1111/j.0960-1627.2004.00207.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0960-1627.2004.00207.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0960-1627.2004.00207.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Embrechts & Alexander Schied & Ruodu Wang, 2018. "Robustness in the Optimization of Risk Measures," Papers 1809.09268, arXiv.org, revised Feb 2021.
    2. Li, Jing & Xu, Mingxin, 2009. "Minimizing Conditional Value-at-Risk under Constraint on Expected Value," MPRA Paper 26342, University Library of Munich, Germany, revised 25 Oct 2010.
    3. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    4. François, Pascal & Gauthier, Geneviève & Godin, Frédéric, 2014. "Optimal hedging when the underlying asset follows a regime-switching Markov process," European Journal of Operational Research, Elsevier, vol. 237(1), pages 312-322.
    5. Pascal François & Geneviève Gauthier & Frédéric Godin, 2012. "Optimal Hedging when the Underlying Asset Follows a Regime-switching Markov Process," Cahiers de recherche 1234, CIRPEE.
    6. Alexander Cherny, 2007. "Pricing and hedging European options with discrete-time coherent risk," Finance and Stochastics, Springer, vol. 11(4), pages 537-569, October.
    7. Jing Li & Mingxin Xu, 2013. "Optimal Dynamic Portfolio with Mean-CVaR Criterion," Risks, MDPI, vol. 1(3), pages 1-29, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:14:y:2004:i:4:p:605-618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.