IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v13y2003i4p503-524.html
   My bibliography  Save this article

Pricing Discrete European Barrier Options Using Lattice Random Walks

Author

Listed:
  • Per Hörfelt

Abstract

This paper designs a numerical procedure to price discrete European barrier options in Black‐Scholes model. The pricing problem is divided into a series of initial value problems, one for each monitoring time. Each initial value problem is solved by replacing the driving Brownian motion by a lattice random walk. Some results from the theory of Besov spaces show that the convergence rate of lattice methods for initial value problems depends on two factors, namely the smoothness of the initial value (or the value function) and the moments for the increments of the lattice random walk. This fact is used to obtain an efficient method to price discrete European barrier options. Numerical examples and comparisons with other methods are carried out to show that the proposed method yields fast and accurate results.

Suggested Citation

  • Per Hörfelt, 2003. "Pricing Discrete European Barrier Options Using Lattice Random Walks," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 503-524, October.
  • Handle: RePEc:bla:mathfi:v:13:y:2003:i:4:p:503-524
    DOI: 10.1111/1467-9965.t01-1-00178
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9965.t01-1-00178
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9965.t01-1-00178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:13:y:2003:i:4:p:503-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.