IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v13y2003i1p187-199.html
   My bibliography  Save this article

Quantiles of the Euler Scheme for Diffusion Processes and Financial Applications

Author

Listed:
  • Denis Talay
  • Ziyu Zheng

Abstract

In this paper we briefly present the results obtained in our paper (Talay and Zheng 2002a) on the convergence rate of the approximation of quantiles of the law of one component of (Xt), where (Xt) is a diffusion process, when one uses a Monte Carlo method combined with the Euler discretization scheme. We consider the case where (Xt) is uniformly hypoelliptic (in the sense of Condition (UH) below), or the inverse of the Malliavin covariance of the component under consideration satisfies the condition (M) below. We then show that Condition (M) seems widely satisfied in applied contexts. We particularly study financial applications: the computation of quantiles of models with stochastic volatility, the computation of the VaR of a portfolio, and the computation of a model risk measurement for the profit and loss of a misspecified hedging strategy.

Suggested Citation

  • Denis Talay & Ziyu Zheng, 2003. "Quantiles of the Euler Scheme for Diffusion Processes and Financial Applications," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 187-199, January.
  • Handle: RePEc:bla:mathfi:v:13:y:2003:i:1:p:187-199
    DOI: 10.1111/1467-9965.00013
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9965.00013
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9965.00013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Talay, Denis & Zheng, Ziyu, 2004. "Approximation of quantiles of components of diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 23-46, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurent Denis & Begoña Fernández & Ana Meda, 2009. "Estimation Of Value At Risk And Ruin Probability For Diffusion Processes With Jumps," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 281-302, April.
    2. Talay, Denis & Zheng, Ziyu, 2004. "Approximation of quantiles of components of diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 23-46, January.
    3. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frikha, N. & Huang, L., 2015. "A multi-step Richardson–Romberg extrapolation method for stochastic approximation," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4066-4101.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:13:y:2003:i:1:p:187-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.