IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v13y2003i1p1-16.html
   My bibliography  Save this article

First‐Order Schemes in the Numerical Quantization Method

Author

Listed:
  • V. Bally
  • G. Pagès
  • J. Printems

Abstract

The numerical quantization method is a grid method that relies on the approximation of the solution to a nonlinear problem by piecewise constant functions. Its purpose is to compute a large number of conditional expectations along the path of the associated diffusion process. We give here an improvement of this method by describing a first‐order scheme based on piecewise linear approximations. Main ingredients are correction terms in the transition probability weights. We emphasize the fact that in the case of optimal quantization, many of these correcting terms vanish. We think that this is a strong argument to use it. The problem of pricing and hedging American options is investigated and a priori estimates of the errors are proposed.

Suggested Citation

  • V. Bally & G. Pagès & J. Printems, 2003. "First‐Order Schemes in the Numerical Quantization Method," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 1-16, January.
  • Handle: RePEc:bla:mathfi:v:13:y:2003:i:1:p:1-16
    DOI: 10.1111/1467-9965.t01-1-00002
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9965.t01-1-00002
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9965.t01-1-00002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.
    2. Pagès, Gilles & Sagna, Abass, 2018. "Improved error bounds for quantization based numerical schemes for BSDE and nonlinear filtering," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 847-883.
    3. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Variance Reduction Applied to Machine Learning for Pricing Bermudan/American Options in High Dimension," Papers 1903.11275, arXiv.org, revised Dec 2019.
    4. Bally Vlad & Caramellino Lucia & Zanette Antonino, 2005. "Pricing and hedging American options by Monte Carlo methods using a Malliavin calculus approach," Monte Carlo Methods and Applications, De Gruyter, vol. 11(2), pages 97-133, June.
    5. Pagès Gilles & Printems Jacques, 2003. "Optimal quadratic quantization for numerics: the Gaussian case," Monte Carlo Methods and Applications, De Gruyter, vol. 9(2), pages 135-165, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:13:y:2003:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.