IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v45y2024i3p333-360.html
   My bibliography  Save this article

Stationary Jackknife

Author

Listed:
  • Weilian Zhou
  • Soumendra Lahiri

Abstract

Variance estimation is an important aspect in statistical inference, especially in the dependent data situations. Resampling methods are ideal for solving this problem since these do not require restrictive distributional assumptions. In this paper, we develop a novel resampling method in the Jackknife family called the stationary jackknife. It can be used to estimate the variance of a statistic in the cases where observations are from a general stationary sequence. Unlike the moving block jackknife, the stationary jackknife computes the jackknife replication by deleting a variable length block and the length has a truncated geometric distribution. Under appropriate assumptions, we can show the stationary jackknife variance estimator is a consistent estimator for the case of the sample mean and, more generally, for a class of nonlinear statistics. Further, the stationary jackknife is shown to provide reasonable variance estimation for a wider range of expected block lengths when compared with the moving block jackknife by simulation.

Suggested Citation

  • Weilian Zhou & Soumendra Lahiri, 2024. "Stationary Jackknife," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(3), pages 333-360, May.
  • Handle: RePEc:bla:jtsera:v:45:y:2024:i:3:p:333-360
    DOI: 10.1111/jtsa.12714
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12714
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:45:y:2024:i:3:p:333-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.