IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v40y2019i5p788-814.html
   My bibliography  Save this article

Flexible and Robust Mixed Poisson INGARCH Models

Author

Listed:
  • Rodrigo B. Silva
  • Wagner Barreto‐Souza

Abstract

In this article, we propose a general class of INteger‐valued Generalized AutoRegressive Conditional Heteroskedastic (INGARCH) models based on a flexible family of mixed Poisson (MP) distributions. Our proposed class of count time series models contains the negative binomial (NB) INGARCH process as particular case and open the possibility to introduce new models such as the Poisson‐inverse Gaussian (PIG) and Poisson generalized hyperbolic secant processes. In particular, the PIG INGARCH model is an interesting and robust alternative to the NB model. We explore first‐order and second‐order stationary properties of our MPINGARCH models and provide expressions for the autocorrelation function and mean and variance marginals. Conditions to ensure strict stationarity and ergodicity properties for our class of INGARCH models are established. We propose an Expectation‐Maximization algorithm to estimate the parameters and obtain the associated information matrix. Further, we discuss two additional estimation methods. Monte Carlo simulation studies are considered to evaluate the finite‐sample performance of the proposed estimators. We illustrate the flexibility and robustness of the MPINGARCH models through two real‐data applications about number of cases of Escherichia coli and Campylobacter infections. This article contains a Supporting Information.

Suggested Citation

  • Rodrigo B. Silva & Wagner Barreto‐Souza, 2019. "Flexible and Robust Mixed Poisson INGARCH Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(5), pages 788-814, September.
  • Handle: RePEc:bla:jtsera:v:40:y:2019:i:5:p:788-814
    DOI: 10.1111/jtsa.12459
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12459
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Randal Douc & François Roueff & Tepmony Sim, 2021. "Necessary and sufficient conditions for the identifiability of observation‐driven models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 140-160, March.
    2. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    3. Yuhyeong Jang & Raanju R. Sundararajan & Wagner Barreto-Souza & Elizabeth Wheaton-Paramo, 2024. "Determining economic factors for sex trafficking in the United States using count time series regression," Empirical Economics, Springer, vol. 67(1), pages 337-354, July.
    4. Wagner Barreto‐Souza & Hernando Ombao, 2022. "The negative binomial process: A tractable model with composite likelihood‐based inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 568-592, June.
    5. Wagner Barreto-Souza & Sokol Ndreca & Rodrigo B. Silva & Roger W. C. Silva, 2023. "Non-linear INAR(1) processes under an alternative geometric thinning operator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 695-725, June.
    6. Luiza S. C. Piancastelli & Wagner Barreto‐Souza & Hernando Ombao, 2023. "Flexible bivariate INGARCH process with a broad range of contemporaneous correlation," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 206-222, March.
    7. Aknouche, Abdelhakim & Scotto, Manuel, 2022. "A multiplicative thinning-based integer-valued GARCH model," MPRA Paper 112475, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:40:y:2019:i:5:p:788-814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.