IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v40y2019i5p707-738.html
   My bibliography  Save this article

Testing for Change in Long‐Memory Stochastic Volatility Time Series

Author

Listed:
  • Annika Betken
  • Rafał Kulik

Abstract

In this article, change‐point problems for long‐memory stochastic volatility (LMSV) models are considered. A general testing problem which includes various alternative hypotheses is discussed. Under the hypothesis of stationarity the limiting behavior of CUSUM‐ and Wilcoxon‐type test statistics is derived. In this context, a limit theorem for the two‐parameter empirical process of LMSV time series is proved. In particular, it is shown that the asymptotic distribution of CUSUM test statistics may not be affected by long memory, unlike Wilcoxon test statistics which are typically influenced by long‐range dependence. To avoid the estimation of nuisance parameters in applications, the usage of self‐normalized test statistics is proposed. The theoretical results are accompanied by an analysis of Standard & Poor's 500 daily closing indices with respect to structural changes and by simulation studies which characterize the finite sample behavior of the considered testing procedures when testing for changes in mean and in variance.

Suggested Citation

  • Annika Betken & Rafał Kulik, 2019. "Testing for Change in Long‐Memory Stochastic Volatility Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(5), pages 707-738, September.
  • Handle: RePEc:bla:jtsera:v:40:y:2019:i:5:p:707-738
    DOI: 10.1111/jtsa.12449
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12449
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhanshou Chen & Yanting Xiao & Fuxiao Li, 2021. "Monitoring memory parameter change-points in long-memory time series," Empirical Economics, Springer, vol. 60(5), pages 2365-2389, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:40:y:2019:i:5:p:707-738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.