IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v40y2019i3p363-382.html
   My bibliography  Save this article

Spatio‐temporal models for big multinomial data using the conditional multivariate logit‐beta distribution

Author

Listed:
  • Jonathan R. Bradley
  • Christopher K. Wikle
  • Scott H. Holan

Abstract

We introduce a Bayesian approach for analyzing high‐dimensional multinomial data that are referenced over space and time. In particular, the proportions associated with multinomial data are assumed to have a logit link to a latent spatio‐temporal mixed effects model. This strategy allows for covariances that are nonstationarity in both space and time, asymmetric, and parsimonious. We also introduce the use of the conditional multivariate logit‐beta distribution into the dependent multinomial data setting, which leads to conjugate full‐conditional distributions for use in a collapsed Gibbs sampler. We refer to this model as the multinomial spatio‐temporal mixed effects model (MN‐STM). Additionally, we provide methodological developments including: the derivation of the associated full‐conditional distributions, a relationship with a latent Gaussian process model, and the stability of the non‐stationary vector autoregressive model. We illustrate the MN‐STM through simulations and through a demonstration with public‐use quarterly workforce indicators data from the longitudinal employer household dynamics program of the US Census Bureau.

Suggested Citation

  • Jonathan R. Bradley & Christopher K. Wikle & Scott H. Holan, 2019. "Spatio‐temporal models for big multinomial data using the conditional multivariate logit‐beta distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(3), pages 363-382, May.
  • Handle: RePEc:bla:jtsera:v:40:y:2019:i:3:p:363-382
    DOI: 10.1111/jtsa.12468
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12468
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Xinyi Lu & Mevin B. Hooten & Ann M. Raiho & David K. Swanson & Carl A. Roland & Sarah E. Stehn, 2023. "Latent trajectory models for spatio‐temporal dynamics in Alaskan ecosystems," Biometrics, The International Biometric Society, vol. 79(4), pages 3664-3675, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:40:y:2019:i:3:p:363-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.