IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v40y2019i1p124-150.html
   My bibliography  Save this article

Combining Cumulative Sum Change‐Point Detection Tests for Assessing the Stationarity of Univariate Time Series

Author

Listed:
  • Axel Bücher
  • Jean‐David Fermanian
  • Ivan Kojadinovic

Abstract

We derive tests of stationarity for univariate time series by combining change‐point tests sensitive to changes in the contemporary distribution with tests sensitive to changes in the serial dependence. The proposed approach relies on a general procedure for combining dependent tests based on resampling. After proving the asymptotic validity of the combining procedure under the conjunction of null hypotheses and investigating its consistency, we study rank‐based tests of stationarity by combining cumulative sum change‐point tests based on the contemporary empirical distribution function and on the empirical autocopula at a given lag. Extensions based on tests solely focusing on second‐order characteristics are proposed next. The finite‐sample behaviors of all the derived statistical procedures for assessing stationarity are investigated in large‐scale Monte Carlo experiments, and illustrations on two real datasets are provided. Extensions to multi‐variate time series are briefly discussed as well.

Suggested Citation

  • Axel Bücher & Jean‐David Fermanian & Ivan Kojadinovic, 2019. "Combining Cumulative Sum Change‐Point Detection Tests for Assessing the Stationarity of Univariate Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(1), pages 124-150, January.
  • Handle: RePEc:bla:jtsera:v:40:y:2019:i:1:p:124-150
    DOI: 10.1111/jtsa.12431
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12431
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2023. "Testing for changes in linear models using weighted residuals," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    2. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    3. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Ghislain Verdier, 2024. "Goodness-of-fit procedure for gamma processes," Computational Statistics, Springer, vol. 39(5), pages 2623-2650, July.
    5. Axel Bücher & Holger Dette & Florian Heinrichs, 2023. "A portmanteau-type test for detecting serial correlation in locally stationary functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 255-278, July.
    6. Lee, Taewook & Baek, Changryong, 2020. "Block wild bootstrap-based CUSUM tests robust to high persistence and misspecification," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:40:y:2019:i:1:p:124-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.